ThmDex – An index of mathematical definitions, results, and conjectures.
Maximal value for a directional derivative at a point
Formulation 0
Let $f : \mathbb{R}^{N \times 1} \to \mathbb{R}$ be a D5614: Differentiable real function at $x_0 \in \mathbb{R}^{N \times 1}$.
Then \begin{equation} \Vert \nabla f(x_0) \Vert_2 = \underset{u \in \mathbb{R}^{N \times 1} : \Vert u \Vert_2 = 1}{\text{max}} \, D_u f(x_0) \end{equation}
Proofs
Proof 0
Let $f : \mathbb{R}^{N \times 1} \to \mathbb{R}$ be a D5614: Differentiable real function at $x_0 \in \mathbb{R}^{N \times 1}$.
This result is a particular case of R5180: Tight upper bound to directional derivative. $\square$