Let $x, y \in \mathbb{R}$ each be a D993: Real number such that
(i) | \begin{equation} \sqrt{x^2 + y^2} = 1 \end{equation} |
Then
(1) | \begin{equation} x^2 + x y \leq 1 \end{equation} |
(2) | \begin{equation} x^2 + x y = 1 \quad \iff \quad x = 1, \; y = 0 \end{equation} |
(3) | \begin{equation} x^2 + x y \geq 0 \end{equation} |
(4) | \begin{equation} x^2 + x y = 0 \quad \iff \quad x = y = 0 \end{equation} |