ThmDex – An index of mathematical definitions, results, and conjectures.
Formulation F13236 on R5614:
F13236
Formulation 0
Let $x, y \in \mathbb{R}$ each be a D993: Real number such that
(i) \begin{equation} \sqrt{x^2 + y^2} = 1 \end{equation}
Then
(1) \begin{equation} x^2 + x y \leq 1 \end{equation}
(2) \begin{equation} x^2 + x y = 1 \quad \iff \quad x = 1, \; y = 0 \end{equation}
(3) \begin{equation} x^2 + x y \geq 0 \end{equation}
(4) \begin{equation} x^2 + x y = 0 \quad \iff \quad x = y = 0 \end{equation}