ThmDex – An index of mathematical definitions, results, and conjectures.
Formulation F12249 on D86: Topology
F12249
Formulation 1
Let $X$ be a D11: Set such that
(i) $\mathcal{P}(X)$ is the D80: Power set of $X$
A D11: Set $\mathcal{T} \subseteq \mathcal{P}(X)$ is a topology on $X$ if and only if
(1) \begin{equation} \emptyset, X \in \mathcal{T} \end{equation}
(2) \begin{equation} \forall \, \mathcal{S} \subseteq \mathcal{T} : \bigcup_{S \in \mathcal{S}} S \in \mathcal{T} \end{equation}
(3) \begin{equation} \forall \, N \in 1, 2, 3, \ldots : \forall \, E_1, \dots, E_N \in \mathcal{T} : \bigcap_{n = 1}^N E_n \in \mathcal{T} \end{equation}