Let $\mathbb{R}^D$ be a D816: Euclidean real Cartesian product such that
(i) | $\ell^*$ is a D780: Lebesgue outer measure on $\mathbb{R}^D$ |
(ii) | $E, F \subseteq \mathbb{R}^D$ are each a D5612: Euclidean real set |
(iii) | \begin{equation} E \subseteq F \end{equation} |
Then
\begin{equation}
\ell^*(E)
\leq \ell^*(F)
\end{equation}