Let $U \subseteq \mathbb{C}$ be an
D5008: Standard open complex set such that
(i) |
\begin{equation}
U
\neq \emptyset
\end{equation}
|
A
D4881: Complex function $f : U \to \mathbb{C}$ is
analytic at $z_0 \in U$ if and only if
\begin{equation}
\exists \, R > 0 \text{ and } a \in \mathbb{C}^{\mathbb{N}} : \forall \, z \in \mathbb{C}
\left( |z - z_0| < R \quad \implies \quad f(z) = \sum_{n = 0}^{\infty} a_n (z - z_0)^n \right)
\end{equation}