ThmDex – An index of mathematical definitions, results, and conjectures.
Formulation F10570 on D1411: Analytic complex function
F10570
Formulation 2
Let $\mathbb{C}$ be the D1378: Standard complex metric space such that
(i) $E \subseteq \mathbb{C}$ is a D78: Subset of $\mathbb{C}$
(ii) \begin{equation} E \neq \emptyset \end{equation}
(iii) $z_0 \in E$ is an D1387: Interior point of $E$ in $\mathbb{C}$
A D4881: Complex function $f : E \to \mathbb{C}$ is analytic at $z_0$ if and only if \begin{equation} \exists \, R > 0, a \in \mathbb{C}^{\mathbb{N}} : \forall \, z \in B(z_0, R) : f(z) = \lim_{N \to \infty} \sum_{n = 0}^N a_n (z - z_0)^n \end{equation}