Let x1,…,xN∈[0,∞) each be an D4767: Unsigned real number.
Then
(1) | N∏n=1xn≤(1NN∑n=1xn)N |
(2) | N∏n=1xn=(1NN∑n=1xn)N⟺x1=x2=⋯=xN |
(1) | N∏n=1xn≤(1NN∑n=1xn)N |
(2) | N∏n=1xn=(1NN∑n=1xn)N⟺x1=x2=⋯=xN |