ThmDex – An index of mathematical definitions, results, and conjectures.
Formulation 0
Then
(1) \begin{equation} \exp (n) \geq \frac{n^n}{n!} \end{equation}
(2) \begin{equation} \exp (n) = \frac{n^n}{n!} \quad \iff \quad n = 0 \end{equation}
Proofs
Proof 0
Proceeding directly from the definitions, we have \begin{equation} \exp(n) = \sum_{m = 0}^{\infty} \frac{n^m}{m!} \geq \frac{n^n}{n!} \end{equation} The second claim is immediate. $\square$