ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Subset structure
Measurable space
Measurable map
Random variable
Uniform random variable
Standard unsigned uniform random real number
Definition D5901
Logistic random real number
Formulation 0
Let $\log$ be the D865: Standard natural real logarithm function.
Let $U \in \text{Uniform}(0, 1)$ be a D4624: Standard unsigned uniform random real number.
A D3161: Random real number $X \in \text{Random}(\mathbb{R})$ is a logistic random real number with parameters $\mu \in \mathbb{R}$ and $\nu \in (0, \infty)$ if and only if \begin{equation} X \overset{d}{=} \mu + \nu \log \frac{U}{1 - U} \end{equation}