(1) | $\{ X(\omega) : \omega \in \Omega \} \neq \emptyset$ is a D17: Finite set |
(2) | \begin{equation} \forall \, x \in \mathcal{X} : \mathbb{P}(X = x) > 0 \end{equation} |
▼ | Set of symbols |
▼ | Alphabet |
▼ | Deduction system |
▼ | Theory |
▼ | Zermelo-Fraenkel set theory |
▼ | Set |
▼ | Binary cartesian set product |
▼ | Binary relation |
▼ | Map |
▼ | Simple map |
(1) | $\{ X(\omega) : \omega \in \Omega \} \neq \emptyset$ is a D17: Finite set |
(2) | \begin{equation} \forall \, x \in \mathcal{X} : \mathbb{P}(X = x) > 0 \end{equation} |