Let $P = (\Omega, \mathcal{F}, \mathbb{P}, T)$ be a D2839: Probability-preserving system.
Then $P$ is a strongly mixing probability-preserving system if and only if
\begin{equation}
\forall \, E, F \in \mathcal{F} :
\lim_{n \to \infty} \mathbb{P}(E \cap T^{-n} F)
= \mathbb{P}(E) \mathbb{P}(F)
\end{equation}