ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Simple map
Simple function
Measurable simple complex function
Random simple number
Random Boolean number
Bernoulli random boolean number
Definition D2854
Poisson random natural number
Formulation 0
Let $\xi = \{ \{ \xi_{n, m} \}_{1 \leq m \leq n} \}_{n \geq 1}$ be a D5163: Random real triangular array such that
(i) $\lambda \in (0, \infty)$ is a D5407: Positive real number
(ii) $\theta_1, \theta_2, \theta_3, \ldots \in (0, 1]$ are each a D5407: Positive real number
(iii) \begin{equation} \theta_n : = \min \left( \frac{\lambda}{n}, 1 \right) \end{equation}
(iv) \begin{equation} \forall \, n \in 1, 2, 3, \ldots : \forall \, m \in 1, \ldots, n : \xi_{n, m} \overset{d}{=} \text{Bernoulli}(\theta_n) \end{equation}
(v) $\xi_{n, 1}, \ldots, \xi_{n, n}$ is an D2713: Independent random collection for each $n \geq 1$
A D5216: Random natural number $X \in \text{Random}(\mathbb{N})$ is a Poisson random natural number with parameter $\lambda$ if and only if \begin{equation} X \overset{d}{=} \lim_{n \to \infty} \sum_{m = 1}^n \xi_{n, m} \end{equation}
Children
D5524: Standard Poisson random natural number
Results
R2203: Expectation of a Poisson random natural number
R5241: Finite sum of I.I.D. Poisson random natural numbers is Poisson
R3600: Finite sum of independent Poisson random natural numbers is Poisson
R5242: Finite sum of uncorrelated identically distributed Poisson random natural numbers is Poisson
R3601: Gaussian approximation to standard Poisson distribution