ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Subset structure
Measurable space
Measure space
Probability space
Independent event collection
Independent collection of event collections
Independent collection of sigma-algebras
Definition D2713
Independent random collection
Formulation 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space.
Let $X_j$ be a D202: Random variable on $P$ for each $j \in J$ such that
(i) $\sigma_{\text{pullback}} \langle X_j \rangle$ is the D1730: Pullback sigma-algebra of $X_j$ on $P$ for each $j \in J$
Let $\mathcal{P}_{\text{finite}}(J)$ be the D2337: Set of finite subsets of $J$.
The D1721: Random collection $X = \{ X_j \}_{j \in J}$ is independent if and only if \begin{equation} \forall \, I \in \mathcal{P}_{\text{finite}}(J) \left[ \forall \, i \in I : E_i \in \sigma_{\text{pullback}} \langle X_i \rangle \quad \implies \quad \mathbb{P} \left( \bigcap_{i \in I} E_i \right) = \prod_{i \in I} \mathbb{P}(E_i) \right] \end{equation}
Formulation 1
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space.
Let $X_j$ be a D202: Random variable on $P$ for each $j \in J$ such that
(i) $\sigma_{\text{pullback}} \langle X_j \rangle$ is the D1730: Pullback sigma-algebra of $X_j$ on $P$ for each $j \in J$
Then $X = \{ X_j \}_{j \in J}$ is an independent random collection on $P$ if and only if \begin{equation} \forall \, N \in \{ 1, 2, 3, \ldots \} : \forall \text{ distinct } j_1, \ldots, j_N \in J \left[ E_{j_1} \in \sigma_{\text{pullback}} \langle X_{j_1} \rangle, \ldots, E_{j_N} \in \sigma_{\text{pullback}} \langle X_{j_N} \rangle \quad \implies \quad \mathbb{P} \left( \bigcap_{n = 1}^N E_{j_n} \right) = \prod_{n = 1}^N \mathbb{P}(E_{j_n}) \right] \end{equation}
Formulation 2
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $X_j$ is a D202: Random variable on $P$ for each $j \in J$
Then $X = \{ X_j \}_{j \in J}$ is an independent random collection on $P$ if and only if \begin{equation} \forall \, N \in \{ 1, 2, 3, \ldots \} : \forall \text{ distinct } j_1, \ldots, j_N \in J \left[ \{ X_{j_1} \in E_{j_1} \}, \ldots, \{ X_{j_N} \in E_{j_N} \} \in \mathcal{F} \quad \implies \quad \mathbb{P} \left( \bigcap_{n = 1}^N \{ X_{j_n} \in E_{j_n} \} \right) = \prod_{n = 1}^N \mathbb{P}(X_{j_n} \in E_{j_n}) \right] \end{equation}
Children
D3358: I.I.D. random collection
Results
R4808: Affine transformations preserve independent real pairs
R4919: Measurable transformation preserves independent countable random collection
R4920: Measurable transformation preserves independent finite random collection
R3833: Uncorrelated random collection need not be independent