ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Collection of sets
Set union
Successor set
Inductive set
Set of inductive sets
Set of natural numbers
Set of integers
Set of rademacher integers
Rademacher integer
Rademacher random integer
Standard rademacher random integer
Standard gaussian random real number
Definition D210
Gaussian random real number
Formulation 0
Let $Z \in \text{Gaussian}(0, 1)$ be a D211: Standard gaussian random real number.
A D3161: Random real number $X \in \text{Random}(\mathbb{R})$ is a gaussian random real number with parameters $\mu \in \mathbb{R}$ and $\sigma \in [0, \infty)$ if and only if \begin{equation} X \overset{d}{=} \sigma Z + \mu \end{equation}
Children
D4612: Folded gaussian random unsigned real number
D4614: Log-gaussian random basic real number
Results
R2802: Expectation of the absolute value of a centred gaussian random real number
R5233: Finite sum of I.I.D. gaussian random real numbers is a gaussian random real number
R5232: Finite sum of independent gaussian random real numbers is a gaussian random real number
R5237: Finite sum of uncorrelated identically distributed gaussian random real numbers is a gaussian random real number
R5235: Sample mean of I.I.D. gaussian random real numbers is a gaussian random real number
R5234: Sample mean of independent gaussian random real numbers is a gaussian random real number
R5238: Sample mean of uncorrelated identically distributed gaussian random real numbers is a gaussian random real number