Let $X$ be a D11: Set.
A D11: Set $\mathcal{T} \subseteq \mathcal{P}(X)$ is a bottom topology on $X$ if and only if
\begin{equation}
\mathcal{T} = \{ \emptyset, X \}
\end{equation}
| ▼ | Set of symbols |
| ▼ | Alphabet |
| ▼ | Deduction system |
| ▼ | Theory |
| ▼ | Zermelo-Fraenkel set theory |
| ▼ | Set |
| ▼ | Subset |
| ▼ | Power set |
| ▼ | Hyperpower set sequence |
| ▼ | Hyperpower set |
| ▼ | Hypersubset |
| ▼ | Subset algebra |
| ▼ | Topology |
| ▶ | D1162: Bottom topological space |
| ▶ | D442: Empty topology |